If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2y^2+4y+22=0
a = -2; b = 4; c = +22;
Δ = b2-4ac
Δ = 42-4·(-2)·22
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-8\sqrt{3}}{2*-2}=\frac{-4-8\sqrt{3}}{-4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+8\sqrt{3}}{2*-2}=\frac{-4+8\sqrt{3}}{-4} $
| x-2=x-15 | | 3h−7=2h | | 7z=6+4z | | 100/16=210/x | | 1(d+3=-7 | | -2/3×x+2=5/6 | | 0.25(3x+5)=2 | | -3/4x=125 | | 16-y=19 | | -9x-21=5x-(-35) | | 4(b+.6)=4.8 | | 9x-21=-4x+49 | | 41=17y+29 | | 12+2x=21 | | 4-d=8 | | 3(s+12)=12 | | n^2-90=0 | | 6x-1=2x-8 | | 2(x+7=36 | | 50=10(d+3) | | 2x=60−10x | | 4x/4=-6x/6 | | 3x^2+8x=2x^2-15 | | x+x+(x/4)+(x/4)=360 | | 4/28=14/x | | 9=19-2p | | 28/4=x/14 | | 6m-2/7=5/14 | | -3/9x+1/3=4/3 | | X+3x+25=180 | | 60+10x=90 | | 2x+105=180 |